Fuzzy Logic based Efficient Data Aggregation Scheme for WSN with Mobile Sink
Keywords:
Mobile sink, network lifetime, reinforcement learning, virtual grid, WSNAbstract
To develop an energy-efficient practical algorithm to aggregate data in a WSN is a widely acceptable problem in the literature. Generally, data aggregation is performed by the cluster heads (CHs), and CHs transmit this aggregated data to the sink. These CHs can deplete their energy rapidly during this period. The proposed scheme is a fuzzy-based reinforcement-learning technique for selecting data aggregator nodes in a WSN with a mobile sink. Virtual grid construction divides the network into uniform cells. Furthermore, a fuzzy logic-based reinforcement-learning algorithm selects a data aggregator node for each cell. Establishing a virtual backbone network of CHs initiates the mobile sink's movement along a predefined, relatively optimal path within the network. Experimental results after the implementation reveal that the presented scheme improves the stability of the network and increases its overall lifetime.
Downloads
References
Al-Karaki, J. N., Ul-Mustafa, R., & Kamal, A. E. (2009). Data aggregation and routing in wireless sensor networks: Optimal and heuristic algorithms. Computer networks, 53(7), 945-960. https://doi.org/10.1016/j.comnet.2008.12.001
Aslam, N., Phillips, W., Robertson, W., & Sivakumar, S. (2011). A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks. Information Fusion, 12(3), 202-212. https://doi.org/10.1016/j.inffus.2009.12.005
Han, Y., Bai, G., & Zhang, G. (2015). NETWORK LIFETIME CONSIDERED ENERGY-AWARE SINK NODE RELOCATION SCHEME. Journal of the Balkan Tribological Association, 21.
Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on wireless communications, 1(4), 660-670. https://doi.org/10.1109/TWC.2002.804190
Jesus, P., Baquero, C., & Almeida, P. S. (2014). A survey of distributed data aggregation algorithms. IEEE Communications Surveys & Tutorials, 17(1), 381-404. https://doi.org/10.1109/COMST.2014.2354398
Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2014). VGDRA: a virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE sensors journal, 15(1), 526-534. https://doi.org/10.1109/JSEN.2014.2347137
Kulkarni, R. V., Förster, A., & Venayagamoorthy, G. K. (2010). Computational intelligence in wireless sensor networks: A survey. IEEE communications surveys & tutorials, 13(1), 68-96. https://doi.org/10.1109/SURV.2011.040310.00002
Kuo, T. W., Lin, K. C. J., & Tsai, M. J. (2015). On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms. IEEE Transactions on Computers, 65(10), 3109-3121. https://doi.org/10.1109/TC.2015.2512862
Maraiya, K., Kant, K., & Gupta, N. (2011). Application based study on wireless sensor network. International Journal of Computer Applications, 21(8), 9-15.
Mishra, S., & Thakkar, H. (2012). Features of WSN and Data Aggregation techniques in WSN: A Survey. Int. J. Eng. Innov. Technol. (IJEIT), 1(4), 264-273.
Navaz, A. S., & Nawaz, G. K. (2016). Flow based layer selection algorithm for data collection in tree structure wireless sensor networks. Int J Appl Eng Res, 11(5), 3359-3363.
Nuruzzaman, M. T., & Ferng, H. W. (2016, May). A low energy consumption routing protocol for mobile sensor networks with a path-constrained mobile sink. In 2016 IEEE International conference on communications (ICC) (pp. 1-6). IEEE. https://doi.org/10.1109/ICC.2016.7511316
Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks, 53(12), 2022-2037. https://doi.org/10.1016/j.comnet.2009.02.023
Sanjay Gandhi, G., Vikas, K., Ratnam, V., & Suresh Babu, K. (2020). Grid clustering and fuzzy reinforcement‐learning based energy‐efficient data aggregation scheme for distributed WSN. IET Communications, 14(16), 2840-2848. https://doi.org/10.1049/iet-com.2019.1005
Sert, S. A., Alchihabi, A., & Yazici, A. (2018). A two-tier distributed fuzzy logic-based protocol for efficient data aggregation in multihop wireless sensor networks. IEEE Transactions on Fuzzy Systems, 26(6), 3615-3629. https://doi.org/10.1109/TFUZZ.2018.2841369
Sharma, T., Balyan, A., Nair, R., Jain, P., Arora, S., & Ahmadi, F. (2022). ReLeC: A Reinforcement Learning‐Based Clustering‐Enhanced Protocol for Efficient Energy Optimization in Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2022(1), 3337831. https://doi.org/10.1155/2022/3337831
Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 1-25. https://doi.org/10.1145/2700264
Xu, X., Li, X. Y., Mao, X., Tang, S., & Wang, S. (2010). A delay-efficient algorithm for data aggregation in multihop wireless sensor networks. IEEE transactions on parallel and distributed systems, 22(1), 163-175. https://doi.org/10.1109/TPDS.2010.80
Yu, B., Li, J., & Li, Y. (2009, April). Distributed data aggregation scheduling in wireless sensor networks. In IEEE INFOCOM 2009 (pp. 2159-2167). IEEE. https://doi.org/10.1109/INFCOM.2009.5062140
Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381-396. https://doi.org/10.1109/ACCESS.2015.2424452