Sustainable Computation: Harnessing DNA for Solving NP Problems, Secure Cryptography, and High-Density Data Storage

Sustainable Computation: Harnessing DNA for Solving NP Problems, Secure Cryptography, and High-Density Data Storage

Authors

  • Akash Bopalkar

Keywords:

DNA Computing, NP Problems, Cryptography, DNA-Based Data Storage

Abstract

DNA is a molecular structure that consists of the nucleotides adenine (A), thymine (T), cytosine (C), and guanine (G). The quaternary bases of DNA aid in the long-term, sustainable, stable, and compact storage of information. The study also looks at DNA’s computational power, including how it might be used to solve difficult issues for conventional computers, like the Maximal Clique Problem, NP-complete problems, and the Hamiltonian Path Problem. Over the past decade, there has also been a significant increase in the use of DNA for cold data storage and cryptography. Compared to the existing digital systems, using the very molecule of life to carry out different calculation tasks appears to be a more sustainable strategy. DNA-based systems are superior to traditional digital designs in terms of storage density, memory capacity, operating speed, and energy efficiency, as shown by a comparative comparison. This study emphasizes DNA as a safe, effective, and sustainable paradigm for data computing and storage in the future.

Downloads

Download data is not yet available.

References

Abbasi, A. A., Mazinani, M., & Hosseini, R. (2019). Image encryption by using a combination of DNA sequence and lattice map. Journal of Advances in Computer Research, 10(2), 61–74.

Abood, O. G., Mesbah, S., & Guirguis, S. K. (2018). Enhancing AES algorithm with DNA computing. 2018 28th International Conference on Computer Theory and Applications (ICCTA), 35–41. IEEE.

Adleman, L. M. (1994). Computing with DNA. Science, 266(5187), 1021–1024.

Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021–1024. https://doi.org/10.1126/science.7997872

Adeniyi, E. A., Falola, P. B., Maashi, M. S., Aljebreen, M., & Bharany, S. (2022). Secure sensitive data sharing using RSA and El Gamal cryptographic algorithms with hash functions. Information, 13(10), 442.

Alberts, B., et al. (2014). DNA replication and repair. Molecular Biology of the Cell (6th ed., pp. 1161–1189). Garland Science.

Aluru, S. (2019). Handbook of computational molecular biology. Chapman and Hall/CRC.

Avery, O. T., MacLeod, C. M., & McCarty, M. (1944). Studies on the chemical nature of the substance-inducing transformation of pneumococcal types. Journal of Experimental Medicine, 79, 137–158.

Benenson, H., Adar, E., Paz-Elizur, A., Shapiro, A., & Keinan, A. (2004). Molecular computing: Machinery for the manipulation of DNA molecules. Nature, 429(6987), 423–428.

Bennett, C. H., & Landauer, R. (1985). The fundamental physical limits of computation. Scientific American, 253(1), 48–56.

Chatzieleftheriou, A., Stefanovici, I., Narayanan, D., Thomsen, B., & Rowstron, A. (2020). Could cloud storage be disrupted in the next decade? USENIX HotStorage Workshop 2020.

Church, G. M., Gao, Y., & Kosuri, S. (2012). Next-generation digital information storage in DNA. Science, 1226355.

DNA chemical structure. (2025). Wikimedia Commons. Retrieved January 31, 2025, from https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg

Dimopoulou, M., Antonini, M., Barbry, P., & Appuswamy, R. (2021). Image storage onto synthetic DNA. Signal Processing: Image Communication, 96, 116286.

Eghdami, H., & Darehmiraki, M. (2011). Application of DNA computing in graph theory. Artificial Intelligence Review, 38(3), 223–235. https://doi.org/10.1007/s10462-011-9247-5

Erlich, Y., & Zielinski, D. (2017). DNA Fountain enables a robust and efficient storage architecture. Science, 355(6328), 950–954.

Franklin, R. E., & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171(4356), 740–741.

Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E. M., Sipos, B., & Birney, E. (2013). Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494(7435), 77.

Hasudungan, H. (2005). DNA computing technique to solve vertex coloring problem. Biological Computation Journal, 8(2), 189–198.

Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36, 39–56.

Joguin, V. (2019). Passive digital preservation now & later. HotStorage ’19: Proceedings of the 11th USENIX Conference on Hot Topics in Storage and File Systems.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.

Lee, J. Y., Shin, S.-Y., Park, T. H., & Zhang, B.-T. (2004). Solving traveling salesman problems with DNA molecules encoding numerical values. Biosystems, 73(1), 45–55.

Lei, Y., Sakakura, M., Wang, L., Yu, Y., Drevinskas, R., & Kazansky, P. G. (2019). Low-loss geometrical phase elements by ultrafast laser writing in silica glass. In CLEO: Applications and Technology (pp. 4–4). Optical Society of America.

Lloyd, S. (2000). Ultimate physical limits to computation. Nature, 406(6799), 1047–1054.

Mahjabin, T., Olteanu, A., Xiao, Y., Han, W., Li, T., & Sun, W. (2023). A survey on DNA-based cryptography and steganography. IEEE Access.

Miescher, F. (1869). Ueber die chemische Zusammensetzung der Eiterzellen. Hoppe-Seyler’s Journal of Physiological Chemistry, 4, 405–409.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114–117.

Mullis, K. B. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350. https://doi.org/10.1016/0076-6879(87)55023-6

Prager, E. M., Wilson, A. C., Lowenstein, J. M., & Sarich, V. M. (1980). Mammoth albumin. Science, 209(4453), 287–289.

Pulido-Gaytan, B., Tchernykh, A., Cortés-Mendoza, J. M., Babenko, M., Radchenko, G., Avetisyan, A., & Drozdov, A. Y. (2021). Privacy-preserving neural networks with homomorphic encryption: Challenges and opportunities. Peer-to-Peer Networking and Applications, 14(3), 1666–1691.

Rothemund, P. W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.

Satir, E., & Kendirli, O. (2022). Asymmetric DNA encryption process with a biotechnical hardware. Journal of King Saud University-Science, 34(3), 101838.

Schwarz, P. M., & Freisleben, B. (2024). Optimizing fountain codes for DNA data storage. Computational and Structural Biotechnology Journal.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.

Shapiro, H. (2002). A simplified molecular Turing machine. Nature, 415(6874), 197–199.

Treangen, T. J., & Salzberg, S. L. (2012). Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nature Reviews Genetics, 13(1), 36.

Wang, B., Zheng, X., Zhou, S., Zhou, C., Wei, X., Zhang, Q., & Wei, Z. (2017). Constructing DNA barcode sets based on particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(3), 999–1002.

Wang, Z.-C., Liang, K., Bao, X.-G., & Wu, T.-H. (2007). A novel algorithm for solving the prize collecting traveling salesman problem based on DNA computing. Journal of Computational Biology, 10(3), 213–226.

Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738. https://doi.org/10.1038/171737a0

Yang, J., & Xu, X. (2002). A molecular computing model for maximal clique problem using circular DNA length growth. Journal of Molecular Computing, 15(4), 124–135.

Zhang, G. (2024). Cryptographic techniques in digital media security: Current practices and future directions. International Journal of Advanced Computer Science and Applications.

Additional Files

Published

31-03-2025

How to Cite

Akash Bopalkar. (2025). Sustainable Computation: Harnessing DNA for Solving NP Problems, Secure Cryptography, and High-Density Data Storage. Vidhyayana - An International Multidisciplinary Peer-Reviewed E-Journal - ISSN 2454-8596, 10(si4). Retrieved from https://j.vidhyayanaejournal.org/index.php/journal/article/view/2170
Loading...