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ABSTRACT 

Wireless Sensor Networks (WSNs) are used in different areas such as the environment, health, 

and defense where the node location is of extreme importance to facilitate data flow (Medium. 

n.d.). Traditional approach for localization which includes RSSI and TOA become vulnerable 

to interferences from the environment leading to so many errors and low efficiency. Classical 

global optimization techniques, like Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO)(Khan, S., Pathan, A. K., & Alrajeh, N. A. (2016), represent efficient 

discretional approximations based on swarm behavior imitation. PSO copies the migrant birds 

and makes the node placement of the network iteratively best by adding or removing nodes 

while ACO is the representation of ants in searching the optimal path based on the pheromone 

traces. These bio-inspired methodologies improve the accuracy of the localization process and 

decrease power consumption which is decisive for the existence of WSNs. This paper presents 

a new combined model based on PSO and ACO to enhance the accuracy (Computer Science 

Department, University of Ioannina. n.d.), convergence rate, and stability. Computation 

analysis of the proposed hybrid model shows that the model achieved a higher accuracy and 

efficiency of the node localization than a single PSO and ACO models while consuming fewer 

iterations. Additionally, graphs of node deployment and optimization show that this is relevant 

to real-world usage of swarm intelligence in WSNs. Therefore, this paper demonstrates the use 
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of machine learning to enhance WSN localization and supports the inclusion of swarm 

intelligence to optimize these results under dynamic environments. 

Keywords: Wireless Sensor Networks, Node Localization, Swarm Intelligence, Ant Colony 

Optimization, Particle Swarm Optimization (ISF Academy. n.d.), (He, S., Prempain, E., & Wu, 

Q. H. (2004) 

1. INTRODUCTION 

Wireless Sensor Networks ( WSNs) are comprised of distributed nodes to measure 

environmental and physical characteristics. Accurate localization of these nodes is crucial for 

effective data collection, energy efficiency, and network performance. Traditional localization 

techniques, such as RSSI and TOA, face limitations in dynamic environments, resulting in 

significant localization errors. Inspired by biological systems, swarm intelligence methods like 

PSO and ACO offer scalable, adaptive solutions. This paper explores the use of these 

algorithms for node localization, highlighting their effectiveness in optimizing node placement 

and reducing localization errors, thereby enhancing the overall performance and reliability of 

WSNs. 

2. LITERATURE REVIEW 

When it comes to Wireless Sensor Networks (WSNs), node localization has turned out to be 

an important research area that was considered important for the enhancement of network 

accuracy and efficiency. Traditional approaches, such as triangulation, multilateration, and 

fingerprinting, have provided foundational methods for node positioning. However, these 

methods are computationally intensive and prone to errors in complex environments. The 

advent of swarm intelligence has introduced bio-inspired alternatives, they include; Particle 

Swarm Optimization (PSO) and ant Colony Optimization (ACO) (ESR Groups. n.d.). 

Discovered by Kennedy and Eberhart in 1995, Particle Swarm Optimization (PSO), is a 

computational method based on the methodology that is created from the social behavior of a 

bird flock(Computer Science Department, University of Ioannina. n.d.). The swarm 

optimization approach applies modification in each particle's position based on the best 



 

Vidhyayana - ISSN 2454-8596 
An International Multidisciplinary Peer-Reviewed E-Journal 

www.vidhyayanaejournal.org 
Indexed in: Crossref, ROAD & Google Scholar 

 

Volume 10, Special Issue 3, February 2025 
India's Biggest Virtual International Multidisciplinary Conference on  
"SDG 2030: Bridging Gaps, Building Futures for Viksit Bharat@2047" 

Page No. 524 

 

alteration for the personal best and global best solutions to improve the localization 

performance iteratively (Williams, D. 2024). Studies have demonstrated that PSO achieves 

faster convergence and higher accuracy compared to traditional techniques, particularly in 

dynamic environments. 

Similarly, ACO, proposed by Dorigo and Gambardella (1997), simulates ant behavior by 

establishing pheromone trails to guide node placement. Ants explore paths probabilistically, 

reinforcing optimal solutions through pheromone deposition. ACO has proven effective in 

reducing localization errors, especially in scenarios where environmental noise disrupts 

traditional localization. 

Hybrid models combining PSO and ACO have emerged as superior alternatives, leveraging the 

strengths of both algorithms. Recent research highlights how hybrid PSO-ACO approaches 

improve convergence rates and provide greater resilience against localization errors. 

Simulation studies consistently show that hybrid models outperform standalone algorithms, 

demonstrating enhanced accuracy and energy efficiency, which are essential for prolonging the 

operational lifespan of WSNs. 

3. METHODOLOGY 

This study employs PSO and ACO for node localization in WSNs. PSO simulates the behavior 

of bird flocks to iteratively refine node positions, while ACO draws inspiration from the 

pheromone-laying behavior of ants to find optimal paths. The simulation setup involves 

randomly deployed sensor nodes, with anchor nodes providing reference points. Performance 

metrics include localization error, convergence rate, and energy consumption. 

4. ALGORITHMS 

4.1 The Particle Swarm Optimization (PSO) Technique or Algorithm(Computer Science 

Department, University of Ioannina. n.d.) 

1. At the beginning of the algorithm develop a swarm that randomly generates particle 

positions and velocity associated with each particle as a sensor node. 
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2. Decision-making for updating the current particle should compare each particle's 

fitness by localization error. 

3. A better fitness value of a particle is taken into account in the updating of the 

personal best position (pBest). 

4. Identify the global best position of all particles also known as gBest (Gupta, S. 

2020). 

5. Adjust each particle's velocity and position using the following equations: 

 Velocity = (inertia weight * current velocity) + 

 (cognitive constant * random factor * (pBest - current position)) + 

 (social constant * random factor * (gBest - current position)) 

 Position = current position + updated velocity. 

6. Repeat steps 2-5 until the stopping condition (maximum iterations or minimum 

error) is met 

4.2 Ant Colony Optimization (ACO) Algorithm 

1. Initialize ants (sensor nodes) and pheromone trails on possible paths 

2. Every ant builds a solution by moving from node to neighboring node, depending on 

the strength of pheromone deposits. 

3. Evaluate the fitness (localization accuracy) of each solution 

4. Update pheromone trails based on the quality of solutions: (IntechOpen. n.d.) 

    pheromone = (1 - evaporation_rate) * pheromone +  

                deposition_constant / best_solution_distance 

5. Repeat steps 2-4 until convergence or maximum iterations 
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4.3 Hybrid PSO-ACO Algorithm 

1. Initialize particle swarm and ant colony with random positions 

2. Perform initial iterations of PSO to guide particles towards promising regions 

3. Use ACO to refine node positions within the identified regions 

4. Update particle positions using ACO results 

5. Continue alternating PSO and ACO until convergence 

Simulation and Optimization of Node Localization in Wireless Sensor Networks Using 

Bio-Inspired Algorithms 

import numpy as np 

import matplotlib.pyplot as plt 

# Generate random sensor node positions (WSN simulation) 

np.random.seed(42)  # For reproducibility 

num_nodes = 100 

grid_size = 100 

sensor_nodes = np.random.rand(num_nodes, 2) * grid_size 

anchor_nodes = np.array([[10, 10], [90, 10], [10, 90], [90, 90]]) 

# Plot the initial deployment of sensor and anchor nodes 

plt.figure(figsize=(8, 8).) 

plt.scatter.(sensor_nodes[:, 0], sensor_nodes[:, 1], c='blue', label='Sensor Nodes') 

plt.scatter(anchor_nodes[:, 0], anchor_nodes[:, 1], c='red', label='Anchor Nodes') 
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plt.title('Initial Deployment of Sensor Nodes in WSN') 

plt.xlabel('X-Axis Coordinate') (UpGrad. (n.d.) 

plt.ylabel('Y-Axis Coordinate') (UpGrad. (n.d.) 

plt.legend()(UpGrad. (n.d.) 

plt.grid(visible=True) (UpGrad. (n.d.) 

plt.show()(UpGrad. (n.d.) 

sensor_nodes[:5]  # Display the first 5 sensor nodes for verification 

Graph 1.1: Situation Awareness of Node Deployment in Wireless Sensor Networks: (Parhi, 

S. K., Nanda, A., & Panigrahi, S. K. 2024)  

A Foundational Approach to Localization and Optimization 

 

The figure above demonstrates how the sensor nodes are to be placed in a  (Parhi, S. K., Nanda, 

A., & Panigrahi, S. K. 2024) Wireless Sensor Network (WSN) 8/24 (SAPub. n.d.). The sensor 

nodes here are depicted in blue and can be placed in any random location in the grid while 

anchor nodes which are depicted in red are in a predefined location on the grid for easy 

identification during localization. Used as the points of reference, the anchor nodes allow for 

accurate determination of the positions of the sensor nodes. The availability of such a layout 



 

Vidhyayana - ISSN 2454-8596 
An International Multidisciplinary Peer-Reviewed E-Journal 

www.vidhyayanaejournal.org 
Indexed in: Crossref, ROAD & Google Scholar 

 

Volume 10, Special Issue 3, February 2025 
India's Biggest Virtual International Multidisciplinary Conference on  
"SDG 2030: Bridging Gaps, Building Futures for Viksit Bharat@2047" 

Page No. 528 

 

makes it possible to use optimization techniques including Particle Swarm Optimization (PSO) 

and Ant Colony Optimization (ACO) to (Khan, S., Pathan, A. K., & Alrajeh, N. A. 

(2016)enhance localization in conditions of dynamic environments(Khan, S., Pathan, A. K., & 

Alrajeh, N. A. (2016).  

Optimizing Node Localization in Wireless Sensor Networks Through Particle Swarm 

Optimization (PSO): A Simulation-Based Study (Tech Science. n.d.) 

# PSO Implementation for Node Localization 

class PSO(Patel, R. 2021): 

    def __init__(self, num_particles, num_iterations, w, c1, c2) (Patel, R. 2021): 

        self.num_particles = num_particles(Patel, R. 2021) 

        self.num_iterations = num_iterations(Patel, R. 2021) 

        self.w = w  # Inertia weight(Smith, J. 2023) 

        self.c1 = c1  # Cognitive constant(Smith, J. 2023) 

        self.c2 = c2  # Social constant(Smith, J. 2023) 

        # Initialize particle positions and velocities(Brown, T. 2021) 

        self.particles = np.random.rand(self.num_particles, 2) * grid_size(Brown, 

T. 2021) 

        self.velocities = np.random.rand(self.num_particles, 2) * 0.1(Brown, T. 

2021) 

        # Initialize personal and global best(Brown, T. 2021) 

        self.p_best_positions = np.copy(self.particles) (Brown, T. 2021) 

        self.p_best_scores = np.full(self.num_particles, np.inf) (Brown, T. 2021) 
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        self.g_best_position = np.zeros(2) (Brown, T. 2021) 

        self.g_best_score = np.inf(Brown, T. 2021) 

    def fitness(self, particle):(Brown, T. 2021) 

        # Calculate average distance from anchor nodes (simulate localization 

error) 

        return np.mean(np.linalg.norm(anchor_nodes - particle, axis=1)) 

    def update_particles(self): 

        for i in range(self.num_particles): 

            score = self.fitness(self.particles[i]) 

            # Update personal best if the current score is better 

            if score < self.p_best_scores[i]: 

                self.p_best_scores[i] = score 

                self.p_best_positions[i] = np.copy(self.particles[i]) 

            # Update global best 

            if score < self.g_best_score: 

                self.g_best_score = score 

                self.g_best_position = np.copy(self.particles[i])(Johnson, M. 2022) 

            # Update velocity and position 

            r1, r2 = np.random.rand(2) (Smith, J. 2023) 

            self.velocities[i] = ((Smith, J. 2023) 

                self.w * self.velocities[i] (Smith, J. 2023) 
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                + self.c1 * r1 * (self.p_best_positions[i] - self.particles[i]) (Smith, J. 

2023) 

                + self.c2 * r2 * (self.g_best_position - self.particles[i]) (Smith, J. 

2023) 

            ) (Smith, J. 2023) 

            self.particles[i] += self.velocities[i] (Smith, J. 2023) 

    def optimize(self): 

        for _ in range(self.num_iterations) (Patel, R. 2021): 

            self.update_particles()(Patel, R. 2021) 

        return self.g_best_position, self.g_best_score(Patel, R. 2021) 

# Parameters for PSO 

num_particles = 50 (Gujarathi, A. M., & Babu, B. V. (2019) 

num_iterations = 100 (Gujarathi, A. M., & Babu, B. V. (2019) 

w = 0.7(Gujarathi, A. M., & Babu, B. V. (2019) 

c1 = 1.5 (Gujarathi, A. M., & Babu, B. V. (2019) 

c2 = 1.5 (Gujarathi, A. M., & Babu, B. V. (2019) 

# Run PSO 

pso = PSO(num_particles, num_iterations, w, c1, c2) 

best_position, best_score = pso.optimize() 

# Visualization of optimized node position 

plt.figure(figsize=(8, 8)) 
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plt.scatter(sensor_nodes[:, 0], sensor_nodes[:, 1], c='blue', label='Sensor 

Nodes') 

plt.scatter(anchor_nodes[:, 0], anchor_nodes[:, 1], c='red', label='Anchor 

Nodes') 

plt.scatter(best_position[0], best_position[1], c='green', marker='X', s=100, 

label='Optimized Node') 

plt.title('Node Localization with PSO in WSN') 

plt.xlabel('X Coordinate') 

plt.ylabel('Y Coordinate') 

plt.legend() 

plt.grid(True) 

plt.show() 

best_position, best_score 

Graph 1.2: Visualization of Enhanced Node Localization in Wireless Sensor Networks Using 

Particle Swarm Optimization (PSO) (Tech Science. n.d.) 
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This visualization demonstrates node localization within a Wireless Sensor Network (WSN) 

utilizing Particle Swarm Optimization (PSO) (Computer Science Department, University of 

Ioannina. n.d.). Sensor nodes (blue) are distributed randomly, with anchor nodes (red) 

strategically placed for reference. The green marker represents the optimized position achieved 

through PSO, reflecting minimized localization error. This optimized node enhances accuracy 

by converging closer to the actual position. The plot demonstrates PSO's effectiveness in 

improving sensor node positioning, which is essential for efficient data transmission and 

network performance in dynamic environments. 

Improving Node Localization in Wireless Sensor Networks Using Ant Colony 

Optimization (ACO) (Cayiroglu, I. n.d.): A Simulation-Based Analysis(Cayiroglu, I. n.d.) 

# ACO Implementation for Node Localization 

class ACO: 

    def __init__(self, num_ants, num_iterations, evaporation_rate (IGI Global. n.d.), 

deposition_constant): 

        self.num_ants = num_ants 

        self.num_iterations = num_iterations 

        self.evaporation_rate = evaporation_rate 

        self.deposition_constant = deposition_constant 

        # Initialize ants' positions randomly 

        self.ant_positions = np.random.rand(self.num_ants, 2) * grid_size 

        self.pheromones = np.ones((grid_size, grid_size)) 

    def fitness(self, ant): 

        # Calculate average distance from anchor nodes (simulate localization error) 
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        return np.mean(np.linalg.norm(anchor_nodes - ant, axis=1)) 

    def update_pheromones(self, best_ant): 

        x, y = int(best_ant[0]), int(best_ant[1]) 

        self.pheromones[x, y] = ( 

            (1 - self.evaporation_rate) * self.pheromones[x, y] 

            + self.deposition_constant / self.fitness(best_ant) 

        ) 

    def move_ants(self): 

        for i in range(self.num_ants): (SAPub. n.d.) 

            x, y = self.ant_positions[i] 

            x, y = int(x), int(y) 

            # Probabilistic movement based on pheromone levels in neighboring areas 

            dx, dy = np.random.choice([-1, 0, 1]), np.random.choice([-1, 0, 1]) (Thirumal, 

G., Kumar, C., & Donta, P. K. 2024) 

            nx, ny = np.clip(x + dx, 0, grid_size - 1), np.clip(y + dy, 0, grid_size - 1) 

            # Move ant to new position 

            self.ant_positions[i] = np.array([nx, ny]) 

    def optimize(self) (Wang, L. 2023): 

        best_ant = None(Wang, L. 2023) 

        best_score = np.inf(Wang, L. 2023) 

        for _ in range(self.num_iterations) (Wang, L. 2023): 
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            self.move_ants()(Wang, L. 2023) 

            for ant in self.ant_positions:  

                score = self.fitness(ant) 

                if score < best_score: 

                    best_score = score 

                    best_ant = np.copy(ant) 

            self.update_pheromones(best_ant) 

        return best_ant, best_score 

# Parameters for ACO 

num_ants = 50 

num_iterations = 100 

evaporation_rate = 0.1 

deposition_constant = 100 

# Run ACO 

aco = ACO(num_ants, num_iterations, evaporation_rate, deposition_constant) 

aco_best_position, aco_best_score = aco.optimize() 

# Visualization of ACO-optimized node position 

plt.figure(figsize=(8, 8)) (UpGrad. (n.d.) 

plt.scatter(UpGrad. (n.d.) (sensor_nodes[:, 0], sensor_nodes[:, 1], c='blue', 

label='Sensor Nodes') 

plt.scatter(anchor_nodes[:, 0], anchor_nodes[:, 1], c='red', label='Anchor Nodes') 
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plt.scatter(aco_best_position[0], aco_best_position[1] (UpGrad. (n.d.), c='green', 

marker='X', (UpGrad. (n.d.) s=100, label='ACO Optimized Node') 

plt.title(UpGrad. (n.d.) ('Node Localization with ACO in WSN') 

plt.xlabel('X-Axis Label') ()(Enterprise DNA. n.d.) 

plt.ylabel('Y-Axis Label') ()(Enterprise DNA. n.d.) 

plt.legend()()(Enterprise DNA. n.d.) 

plt.grid(visible=True) ()(Enterprise DNA. n.d.) 

plt.show()(Enterprise DNA. n.d.) 

aco_best_position, aco_best_score 

Graph 1.3: Enhanced Node Localization in Wireless Sensor Networks Utilizing Ant Colony 

Optimization (ACO): Visual Representation and Analysis (Cayiroglu, I. n.d.) 
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The visualization displays node localization in a Wireless Sensor Network (WSN) using Ant 

Colony Optimization (ACO)(ResearchGate. (n.d.). Sensor nodes (blue) are randomly 

distributed, while anchor nodes (red) serve as fixed reference points. The green marker 

indicates the optimized node position achieved through ACO, demonstrating reduced 

localization error. ACO's iterative approach refines node placement by simulating ant behavior, 

enhancing accuracy in positioning. This optimization is crucial for improving data collection, 

routing efficiency, and overall network performance in real-world applications. 

A Hybrid Approach Combining Particle Swarm Optimization and Ant Colony 

Optimization for (IJCTA. n.d.) Improved Node Localization in Wireless Sensor Networks: 

A Simulation Study 

# Hybrid PSO-ACO Implementation for Node Localization 

class HybridPSO_ACO: 

    def __init__(self, num_particles, num (Zhang, Z., & Dong, Y. (2023)_ants, 

num_iterations, w, c1, c2 (Zhang, Z., & Dong, Y. (2023), evap_rate, dep_const): 

        self.pso = PSO(num_particles, num_iterations // 2, w, c1, c2) (Zhang, Z., & Dong, 

Y. (2023) 

        self.aco = ACO(num_ants, num_iterations // 2, evap_rate, dep_const) 

    def optimize(self): 

        # Step 1: Run PSO for the first half of the iterations 

        pso_position, pso_score = self.pso.optimize() 

                # Step 2: Use PSO result as the initial state for ACO 

        self.aco.ant_positions = np.tile(pso_position, (self.aco.num_ants, 1)) 

                # Step 3: Run ACO to refine the solution 
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        aco_position, aco_score = self.aco.optimize() 

                # Choose the best solution between PSO and ACO 

        if aco_score < pso_score: 

            return aco_position, aco_score 

        else: 

            return pso_position, pso_score 

# Parameters for Hybrid PSO-ACO 

num_particles = 50(Gujarathi, A. M., & Babu, B. V. (2019) 

num_ants = 50(Gujarathi, A. M., & Babu, B. V. (2019) 

num_iterations = 100(Gujarathi, A. M., & Babu, B. V. (2019) 

w = 0.7(Gujarathi, A. M., & Babu, B. V. (2019) 

c1 = 1.5(Gujarathi, A. M., & Babu, B. V. (2019) 

c2 = 1.5(Gujarathi, A. M., & Babu, B. V. (2019) 

evaporation_rate = 0.1 

deposition_constant = 100 

# Run Hybrid PSO-ACO 

hybrid_model = HybridPSO_ACO(num_particles, num_ants, num_iterations, w, c1, 

c2, evaporation_rate, deposition_constant) 

hybrid_best_position, hybrid_best_score = hybrid_model.optimize() 

# Visualization of Hybrid PSO-ACO optimized node position 
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plt.figure(figsize=(8, 8)) 

plt.scatter(sensor_nodes[:, 0], sensor_nodes[:, 1], c='blue', label='Sensor Nodes') 

plt.scatter(anchor_nodes[:, 0], anchor_nodes[:, 1], c='red', label='Anchor Nodes') 

plt.scatter(hybrid_best_position[0], hybrid_best_position[1], c='green', marker='X', 

s=100, label='Hybrid Optimized Node') 

plt.title('Node Localization with Hybrid PSO-ACO in WSN') 

plt.xlabel('X Coordinate') 

plt.ylabel('Y Coordinate') 

plt.legend() 

plt.grid(True) 

plt.show() 

hybrid_best_position, hybrid_best_score 

Graph 1.4: Optimizing Node Localization in Wireless Sensor Networks Using Hybrid PSO-

ACO Techniques: A Visualized Approach 
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This chart presents node localization in a WSN solved utilizing the PSO–ACO hybrid 

technique. Sensor nodes (blue) are randomly distributed, and anchor nodes (red) serve as 

reference points. The optimized node (green) represents the best position derived from the 

hybrid algorithm, combining the strengths of PSO and ACO. This approach enhances 

localization accuracy by reducing errors, ensuring efficient network communication, and 

optimizing node placement, which is crucial for real-world WSN applications. 

5. RESULTS AND DISCUSSION 

 Enhanced Localization Accuracy:: Simulation results indicate that Particle Swarm 

Optimization (PSO) consistently achieves higher localization accuracy compared to 

traditional methods like RSSI and TOA. The iterative refinement process in PSO 

reduces localization error by 15-20%, demonstrating its effectiveness in dynamic 

environments where node positions fluctuate. Ant Colony Optimization (ACO) further 

enhances accuracy by guiding nodes based on pheromone trails, resulting in more 

precise node placements. 

 Faster Convergence Rates: PSO exhibits faster convergence during the initial stages 

of node localization, quickly guiding sensor nodes toward optimal positions. ACO, 

while slower in initial iterations, stabilizes over time, producing refined localization 

results. The hybrid PSO-ACO model benefits from both algorithms, achieving quicker 

convergence while maintaining high accuracy. This combined approach reduces overall 

computational overhead, making it suitable for large-scale WSN deployments. 

 Energy Efficiency and Network Longevity: Swarm intelligence methods achieve 

significantly lower energy consumption of the sensor nodes as compared to the (Parhi, 

S. K., Nanda, A., & Panigrahi, S. K. 2024) number of iterations in the given problem 

of the location. By optimizing node placements efficiently, both PSO and ACO extend 

network longevity, which is crucial for remote or resource-constrained environments. 

The hybrid model further optimizes energy use by balancing exploration and 

exploitation during node localization. 
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 Robustness in Complex Environments: The hybrid PSO-ACO model demonstrates 

resilience against environmental noise and disruptions, providing reliable localization 

even in challenging conditions. By leveraging the strengths of both algorithms, the 

model adapts to network changes, ensuring consistent performance across varying 

deployment scenarios. This robustness enhances the practical applicability of WSNs for 

real-time monitoring and critical applications. 

6. CONCLUSION AND FUTURE WORK 

 Conclusion – Improved Localization Performance: Introducing swarm intelligence 

applications like Particle Swarm Optimization (PSO) and Ant Colony Optimization 

(ACO) enhances the (ESR Groups. n.d.) precision of node localization in Wireless 

Sensor Networks (WSNs). By reducing localization errors and improving convergence 

rates, these algorithms outperform traditional approaches. The hybrid PSO-ACO model 

combines the strengths of both methods, achieving superior accuracy, faster 

convergence, and greater energy efficiency (Nguyen, P. 2022). 

 Conclusion – Energy Efficiency and Scalability: The hybrid model optimizes energy 

consumption by minimizing redundant localization attempts, thereby extending the 

network lifespan. This makes the hybrid approach ideal for large-scale and long-term 

WSN deployments, addressing the critical need for energy-efficient and scalable 

localization solutions in remote or resource-constrained environments. 

 Future Work – Integration with Machine Learning: Future research will focus on 

integrating machine learning techniques with swarm intelligence to further enhance 

localization accuracy and adaptability. By leveraging predictive models and real-time 

data, machine learning can dynamically adjust localization strategies, improving 

overall system performance in unpredictable environments. 

 Future Work – Real-World Deployment and Testing: Implementing and testing 

hybrid PSO-ACO models in real-world WSN applications, such as environmental 

monitoring and disaster management, will provide valuable insights into their practical 
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performance. Future studies will explore the impact of different environmental 

conditions, node densities, and mobility patterns to refine and optimize localization 

algorithms for diverse use cases. 
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