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Abstract 

Adult mammalian skeletal muscle regeneration involves many proteins and signalling 

networks. Cytokines influence skeletal muscle development. Myofibrillar repair and 

regeneration depend on cytokines generated by cells of immune system, at injury site of 

muscle. Skeletal muscle is a key generator of cytokines. Muscle-released cytokines 

(myokines) may have endocrine effects on regulation of metabolism. Available reports 

suggest that myogenic differentiation and regeneration are governed by autocrine cytokines 
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released by muscles. Present review focus on cytokines that (a) expression of muscle cells 

and (b) have a myogenic role. This group of cytokines controls the entire myogenic process. 

How cytokines create a regulatory network is an intriguing and crucial topic. To fully explore 

the therapeutic potential of cytokines, functional studies must pinpoint their in vivo source. 

Keywords: Myofibril, cytokines, skeletal system, Hepatocytes, Myostatin 

Introduction 

One of the few adult mammalian tissues that may regenerate after injury is skeletal muscle 

due to a large number of stem cells. Satellite cells are myogenic progenitor cells that lie latent 

under myofibres' basal lamina until damaged by trauma, toxins, exercise, or disease. When an 

injury occurs, some activated satellite cells go into quiescence to allow the pool of stem cell 

of muscle to self-renew, whereas the activated remainder cells proliferate at the injury site to 

provide a place for the production of new myofibrils or the repair of damaged myofibrils [1]. 

Expression of embryonic myogenic genes, like MyoD and MEF2 transcription factors [2], is 

important for myoblast regeneration. The cells of Myoblasts should undergo cell-cell 

adhesion, migration, alignment, cytoskeletal rearrangement and fusion of membrane to form 

a multinucleated myofibre. Myocyte fusion is governed by two distinct molecular pathways 

[3]. Myotubes form from immature myoblasts during differentiation. Myofibres are formed 

when myoblasts and myotubes recombine. p38, PI3K/AKT, mTOR, JAK/STAT regulates 

this myogenic process. This review focuses on cytokines that are derived from muscle cells 

and their signalling roles in myogenesis. The first-discovered cytokines were thought to come 

from the blood and influence inflammation. Almost any cell type can secrete factors, and 

even the pioneering cytokines have activity outside the immune system. These secreted 

components have a variety of names, some of which overlap. Interleukins and interferons are 

considered genuine cytokines because they signal via JAK kinase-linked receptors. Most 

growth factors function through tyrosine kinases. G protein-coupled receptors have 

chemokines which are called "chemoattractant ligands" for attracting cells. TGFβ and TNF 

receptors bind these cytokines. "Cytokine" refers 30 kDa secreted protein which works via 

receptors that are present on cell surface. Nearly all members of the tumour necrosis factor 
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(TNF) family exist in both transmembrane and extracellular soluble forms; both are 

physiologically active. Some cytokines like VEGF, IL-12 are greater than the 30 kDa. 

Immune cells infiltrate injury sites to eliminate damaged tissue and enhance muscle repair 

[4]. Immune cells may emit chemicals that influence muscle repair after injury. Skeletal 

muscle's importance as a secretory organ has grown in the past two decades. Skeletal muscle 

cells produce myokines which are cytokines (during exercise) to exert metabolic and 

hormonal effects [5]. Myokine IL-6 is released by working muscles and has a variety of 

beneficial effects on metabolism (e.g., [5, 6]). Cytokines of endocrine system has little role in 

regulating myogenesis. Single-cell RNA sequencing (scRNAseq) allows for in-depth 

transcriptionomics of injured muscle, it has become obvious that there is a considerable 

degree of heterogeneity in gene expression among the many cell types and subpopulations 

that contribute to repair and regeneration [7-10]. Immuno-myoblasts are satellite cells in 

regenerated muscle that express immune genes. These cells may help regenerate cytokines. 

ScRNAseq findings from multiple groups [7-10] imply a cytokine-expressing satellite cell 

subpopulation. This review is just beginning to learn where cytokines come from and how 

cells react to them during regeneration. The current investigation focuses on cytokines 

released by muscle cells that influence skeletal muscle differentiation and regeneration to 

shed light on the myocyte lineage's role in myogenesis. 

Skeletal muscle cells as cytokine factories.

Muscle-derived cytokines have long been suspected of playing a role in autocrine and 

paracrine modulation of myogenesis, and it's well recognised that components involved in 

skeletal myoblasts differentiation. Although cultured muscle cells are prolific cytokine 

secretors, muscle tissue homogenates may contain non-muscle proteins. Skeletal muscle 

secretome proteome view was provided 10 years ago by multiple research groups. Mouse 

C2C12 myoblast growth analysis was done by two research teams using SILAC and 

proteomic methods [11-13]. 34 secreted proteins were discovered by Chan et al. of which 

none were cytokines or growth factors. The two studies indicated that proteins changed their 

secretion pattern during differentiation, suggesting that the molecules may regulate 
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myogenesis. Yoonet al. studied 254 proteins in totally differentiated myotubes of rat L6 

myoblast, another widely used myogenic cell line, where small up- or down-regulation 

observed by short-term (5 h) insulin administration [14]. Norheim et al. [15] analysed human 

myotubes and found 18 secreted proteins. 84 chemokines were analysed in mouse primary 

myoblasts by Griffin et al. The bulk of these genes surge during myocyte fusion, suggesting a 

function for chemokines in the cell mobility required for fusion [16]. Henningsen et al. 

discovered no clear link among quantities of cytokine proteins with their mRNAs [13], 

indicating that post-transcriptional regulation may play a major role in muscle cell cytokine 

secretion. Many muscle-secreted cytokines have not been linked to myogenesis. The 

evidence suggests that muscle cell-secreted proteins may influence myogenic differentiation 

and muscle regeneration. 29 potential regulators of myogenesis using an RNAi-based 

functional screen were identified after assessing 134 mouse cytokines for their effect on 

myogenic differentiation in C2C12 myoblasts [17]. 

Myogenic differentiation and autocrine cytokines  

Muscle-secreted substances can regulate myogenesis. Within the following paragraphs, many 

primitive cytokines are overviewed. IGF1 and IGF2 are two of many cytokines shown to 

promote autocrine myogenesis [18-20], but they were discovered and studied first. Skeletal 

muscle cells respond positively to IGFs, increasing in size and proliferating [21, 22]. Over 30 

years ago, myoblasts secreted IGF2, a growth factor essential for initiating differentiation 

[23]. Myogenin [18] is boosted by IGF1 and IGF2 [24, 25], which are produced by C2C12 

myoblasts. Autocrine IGF2 is another growth factor that helps muscle cells in addition to 

PDGF from hepatocytes and PDGF from fibroblasts. In vitro, FGFs suppress myogenic 

growth, while IGFs stimulate it [19]. Direct inhibition of myogenic gene expression has also 

been postulated, but FGF2 (basic FGF) is more effective than FGF1 (acidic FGF) at 

preventing cell cycle withdrawal and reducing differentiation. Multiple fibroblast growth 

factors (FGFs) (FGF1, 2, 4, and 6) are expressed by satellite cells and have been shown to 

stimulate the growth of cultured satellite cells in an autocrine fashion [26]. During muscle 

regeneration, FGFs may inhibit myogenic differentiation and encourage the proliferation of 

satellite cells. The role of FGF in myogenesis has not been demonstrated in living organisms 
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(to be discussed later). Myoblast-produced platelet-derived growth factor (PDGF) suppresses 

myogenic differentiation by preventing cells from entering a resting state after dividing [27-

29]. During muscle regeneration in rats, hepatic growth factor (HGF) promotes satellite cell 

proliferation and suppresses differentiation [30]. Unlike FGF, PDGF, and HGF, IGFs boost 

myoblast proliferation without interfering with myogenic activity during differentiation. IGF2 

in particular has a mitogenic activity that is unrelated to its myogenic effects. 

Transforming growth factor beta (TGFβ)  

Three teams reported in 1986 that TGFβ suppressed differentiation of myogenesis in lab 

conditions [31-33]. These exploratory experiments found TGFβ's action was independent of 

cell growth. TGF-A increases myoblast proliferation by activating Smad2 [34, 35]. C2C12 

cells confirm this effect. TGFβ-activated Smad3 may decrease MyoD and other myogenic 

regulatory factors' transcriptional activity [36]. Myoblasts synthesise TGF in vitro, and mouse 

skeletal muscles express TGF mRNA [37], indicating an autocrine role. Myostatin (GDF8) is 

a TGFβ family member that inhibits muscle hypertrophy in mice [38]. Myostatin gene 

deletion causes double-muscled mice, cattle, and humans [39]. Myostatin reduces muscle 

growth and myogenesis in several ways. Muscle cells secrete activin A and GDF11, TGFb 

family members that suppress myogenic differentiation [40, 41]. When they interact with 

muscle-released follistatin, they disrupt activin receptor binding [41-43]. Follistatin induces 

muscle growth [44,45] due to its anti-myostatin action, but a myostatin-independent 

mechanism has also been proposed [46]. 

Muscle-produced cytokines regulate myogenesis 

Endogenous or synthetic cytokines regulate myogenesis and muscle cell expression in vitro 

or in vivo. Interleukins/muscle-derived cytokines in myogenesis, transforming growth factor 

beta (TGFβ), and transforming neurotrophic factor (TNF), chemokines, ligands for receptor 

tyrosine kinases, and chemokines. Interferons, discovered by R. J. Waldemer, relay the Streye 

signal through cytokine receptors. Although not all cytokines have been reported for their 

myogenic action, many articles detail the cellular processes of autocrine regulation in 
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myogenesis by various cytokines. Numerous muscle-derived cytokines play multiple roles in 

regulating the myogenic process.  

There was a rise in the number of satellite cells that had become active. 

Examples include CCL2 [47], CXCL 16 , FGFs (1, 2, 4, 6, and maybe others) [30, 38], G-

CSF [48], HGF [43, 44], IFNc [49], IGFs [29-31], IL-1 [50], IL-6 [51], LIF [52], NGF [53], 

PDGF [27-29], TGFβ [34,35], and Sonic hedgehog (SHH) [54,55]. By binding to receptors, 

these cytokines activate signalling proteins such as ERK, AKT, SMADs, and STATs, which 

in turn control cell proliferation. SHH is essential for myogenesis during development but is 

not found in mature muscles [56]. Blocking SHH signalling with medication hinders muscle 

regeneration [57]. Although Ptch1 and Gli1 are produced by C2C12 cells (derived from 

mouse primary myoblasts), SHH is not [55]. SHH is a muscle-derived cytokine since it is 

synthesised in vivo from damaged muscle fibres [57]. Specifically, myostatin suppresses 

satellite cell self-renewal and proliferation via influencing G1 cell cycle regulators p21CIP 

and Cdk2 [58, 59]. Proliferation and activation of satellite cells are stymied by activin A [60]. 

Epigenetic suppression of Notch1 and NF-kappaB signalling are the mechanisms by which 

TNFa suppresses satellite cell activation. [61, 62] 

Leaving the Cell Cycle 

To initiate myogenic differentiation, cells exit the cell cycle and begin to differentiate in 

response to cytokines. This makes sense, as distinction lasts forever. Knocking down Flt3L 

has a detrimental effect on myoblast growth in vitro and muscle regeneration in vivo [63]. 

Flt3L promotes G0/G1 transition in C2C12 myoblasts. When expressed on haemopoietin 

cells, Flt3L stimulates cell division by activation of extracellular signal-regulated kinase 

(ERK) signalling [64], but in myoblasts, Flt3L-Flt3 signalling activates cell cycle withdrawal 

via inhibition of ERK via a non-canonical p120RasGAP pathway [78]. Primary myoblasts 

from L6 [65], C2C12 [68], mice [66], and humans [67] have all been found to express brain-

derived neurotrophic factor (BDNF). Delay in cell cycle exit and impaired differentiation are 

observed in primary myoblasts with BDNF knocked down or deleted in vitro [66 ,67], 

indicating a beneficial role for BDNF in promoting myoblast cell cycle exit. In the 
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subventricular zone and the dentate gyrus of the hippocampus, BDNF promotes cell 

proliferation [68], while Flt3L does not. At the outset of differentiation, VEGF inhibits cell 

proliferation, making it a promising candidate for cell cycle exit [69]. Myogenic 

differentiation and cell cycle exit are adversely regulated by fibroblast growth factors (FGFs) 

[70, 71], PDGF], HGF, and TGFb, as well as tumour necrosis factor alpha (TNFa) [72], 

BMP4/7 [73-75], CXCL14 [76], and TNFSF10/TRAIL [77]. Despite the fact that individual 

cytokines belong to different classes and signal through different types of receptors, ERK 

signalling has evolved as a common downstream pathway responsible for changing the cell 

cycle.  

Myogenic differentiation is slowed by pervasive mitogenic signalling via ERK [78, 79], 

which in turn requires the expression of the cyclin-dependent kinase inhibitor p21CIP 

[80,81]. Multiple cytokine signals may hypothetically converge on the cell cycle machinery 

after being transduced through distinct downstream pathways. Some cytokines may be 

influencing the exit from the cell cycle, albeit this aspect of their purported impacts on the 

first stage of differentiation was not investigated in all published publications. Myoblasts 

from a mouse embryo express LIF [82], recombinant LIF reduces myoblast differentiation 

early on, leading to decreased p21CIP expression and elevated ERK activation, and inhibition 

of ERK signalling rescues differentiation in LIF-treated cells [83]. Proliferation in primary 

mouse myoblasts was found to be increased by LIF in previous investigations [52]. When 

taken together, these findings strongly suggest that LIF hinders myogenic development by 

preventing cells from exiting the cell cycle. Using an RNAi screen, we identified ten new 

orso-cytokines (across several families) with the potential to suppress myogenic 

differentiation by inhibiting cell cycle withdrawal [28]. Is it desirable to maintain the satellite 

cell pool using the available arsenal of differentiation inhibitors, or is this not necessary for 

its function? Myoblast differentiation can proceed in the absence of all three of these 

cytokines, proving that they are not redundant 
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Differentiation Begins

It's possible that cytokines play a role here, even if the cell cycle isn't involved., while in 

others, cell cycle withdrawal is a direct result of cytokine-regulated differentiation initiation. 

IGF-1 and IGF-2 activate myogenic differentiation via IGF1R and PI3K-AKT [21, 84]. 

mTOR serves multiple roles in IGF2's myogenic regulation. The AKT kinase mTOR 

complex 2 (mTORC2) is a positive regulator of IGF2, and mTOR regulates IGF2 expression 

in muscle cells in a rapamycin-sensitive and kinase-independent manner [85-87]. SHH has 

recently been shown to promote C2 myoblast development via the PI3K pathway [54], 

although recombinant SHH has been shown to decrease C2C12 differentiation. [70]. Possible 

explanations include differences between C2 and C2C12 [88]. SHH also increases myoblast 

and satellite cell proliferation; hence, the outcome of proliferation versus differentiation may 

depend on when SHH is added to cell culture [54, 55]. Myostatin blocks differentiation by 

reducing MyoD expression and activity via Smad3 [89]. Myostatin activates activin type II. 

Myostatin decreases myoblast development; mTORC1 and mTORC2 signalling may be 

involved [90]. TGFb1, GDF11, and Acti-Vin A may have a similar role to myostatin. 

Myogenin expression and myotube fusion are impaired in IL-6-knockdown C2C12 cells and 

mouse primary myoblasts [91, 92]. The different positive and negative regulators at different 

stages of myogenic differentiation are shown in table 1. 

Progression of Myoblast Fusion and Migrating Cells 

Myotubes and myofibres are formed when myogenic gene expression is turned on and the 

cell cycle is halted in single-nucleated myocytes. Myocyte migration and proper cell 

placement or alignment are prerequisites for fusion. Myoblast migration and differentiation 

are both stimulated by VEGF, which is well known to be a cell migration driver [69,93]. 

Myoblast migration is stimulated by interleukin-6 and IL-7. Myocyte migration and fusion 

are impacted by CXCL12 and CXCR4 [16]. Migration of C2C12 cells is stimulated by 

CXCL14 [114]. The upregulation of chemokine mRNA expression during myoblast fusion 

was shown by Griffin et al. [16], which suggests that a network of chemokines may direct 

this process. Cell migration and actin cytoskeleton dynamics are governed by cytokine 



 

Vidhyayana - ISSN 2454-8596 
An International Multidisciplinary Peer-Reviewed E-Journal 

www.vidhyayanaejournal.org 
Indexed in: Crossref, ROAD & Google Scholar 

Volume 9, Special Issue 2, March 2024 
A Virtual Conference in Amrit Kaal on “Viksit Bharat@2047” Page No. 442 

signalling pathways that originate in muscle [94, 95]. Myoblast migration and myocyte fusion 

regulators may be associated with cytokine signalling [3]. In both embryonic and adult 

myogenesis, myoblast-myoblast fusion results in the formation of nascent myotubes, while 

myoblast-myotube fusion results in the formation of mature myotubes or myofibres [96]. 

Remarkably, the two fusion processes are driven by completely separate molecules and 

signalling pathways [3, 96]. The myocyte fusion-regulating cytokine IL-4 was first described 

by Horsley et al. [97]. The origin of cytokines in the body is still a mystery [98]. Although 

Heredia et al. [98] found no IL-4 expression in regenerating muscles in vivo, it is clear that 

fibroblasts and adipocytes are necessary for myofibre regeneration. Instead, IL-4 was 

discovered to regulate these cells after being secreted by recruited eosinophils. Motors 

regulate the fusion of second-stage myocytes by the secretion of a factor involved in 

myogenic differentiation [99]. The expression of follistatin in muscle cells is regulated by 

mTOR, which includes microRNA-1 and HDAC4. Follistatin is involved in both phases of 

myocyte fusion 100]. Maintaining viability of cells although essential, myocyte survival is 

not a direct step in the myogenesis process. Myoblast survival can be boosted by CNTF 

[101], IGF2 [37], SHH [70], TNFSF14 [102], and VEGF [69, 93]. Many different types of 

cells rely heavily on AKT signalling, which is regulated by Ser/Thr kinases [103,104]. AKT 

is involved in the signalling pathways that control myoblast survival by CNTF and TNFSF14 

[101,102]. Pro-apoptotic cytokines could be produced in muscle. Myoblasts can be killed by 

exogenous IL-1 without any effect on their ability to divide or fuse [105]. IL-1 is expressed 

by myoblasts. Myogenesis cell number and density may be determined by opposing cytokine 

signalling. 

Cytokines produced by muscles during myogenesis in vivo 

It was previously thought that the primary source of cytokines was immune cells at the 

damage site [4]. Although cytokines have been related to inflammation and the immune 

system, they may also have a role in the development of muscle illnesses such muscular 

dystrophy, cachexia, and sarcopenia. Myogenesis is influenced by muscle-derived 

cytokinesin, and in vitro research have helped us better grasp this relationship. Surprisingly, 

studies that examine myogenesis in living organisms rarely alter the expression of cytokines 
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that are particular to muscles. During acute injury-induced muscle regeneration or in muscles 

that are undergoing satellite cell-dependent compensatory hypertrophy under mechanical 

strain, many of the cytokines mentioned in this review (that are expressed by muscle cells and 

have myogenic functions) are expressed in myogenic cells or myofibres. Muscles with 

Duchennes' muscular dystrophy (DMD) and other forms of dystrophy undergo spontaneous 

degradation and regeneration, and this process is accompanied by the expression of certain 

cytokines [106]. Muscle regeneration, hypertrophy, dystrophy, and development are all 

reflected in the expression of different cytokines. Some cytokines have been found to assist 

normal or dystrophic muscles repair. 

BDNF 

Muscle-regenerating mice produce more BDNF [81]. BDNF was discovered to be a myokine 

produced in human skeletal muscles in response to exercise that controls autocrine and 

paracrine muscle metabolism [107,108]. Healthy human skeletal muscles and immune cells 

near regenerated myofibrils express BDNF [67]. Exercise increases the number of 

BDNF+/myogenin+ cells, suggesting that human satellite cell produced BDNF may perform 

a myogenic role [109]. The lack of muscle regeneration in mice with targeted deletion of the 

BDNF gene, which was achieved by satellite cell-specific Myf5-Cre [66], provides strong 

support for the function that muscle-derived BDNF plays in myogenesis. 

FGF6 

FGF6 is expressed in embryonic skeletal muscle [110,111] and damaged muscles undergoing 

regeneration [112,113]. Contradictory results show that FGF6-null mice may have poor 

muscle regeneration upon injury due to lower satellite cell proliferation. Accelerated soleus 

muscle regeneration with intramuscular recombinant FGF6 [113] supports poor regeneration 

in FGF6-null animals. These data support a function for muscle-derived FGF6, although solid 

proof is missing until muscle-specific ablation is conducted. 
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IGF 

IGF1 and IGF2 promote muscle regeneration [114,115]. Transgenic mice with muscle-

specific IGF1 have hypertrophy, rapid regeneration after injury, and prevention of muscle 

degeneration in MDX animals [116-118]. IGF-binding growth factor receptor 1 deletion 

inhibits muscle growth [119,120]. No muscle-specific IGF1 or IGF2 deletions support 

autocrine IGF activity in vivo. 

Mutations in the bovine myostatin gene cause double-muscled cattle. Systemic myostatin 

deletion in mice enhances muscle growth. Myostatin is expressed almost exclusively in 

mouse skeletal muscles, hence systemic deletion demonstrates muscle autonomy [53]. 

Myostatin antagonist follistatin enhances mouse muscle growth [121]. Mechanically strained 

hypertrophic muscles express increased myostatin [122]. Myostatin KO improves muscle 

regeneration and strength in the mdx mouse, a frequent (but poor) DMD model [123], making 

it a potential therapeutic target [124,125]. TNFα decreases myoblast development in human 

and animal cultures [ 126,127], suggesting it is a significant inflammatory mediator of age-

related or disease-related muscle atrophy. 

TNFα is expressed in mdx mice myofibres during regeneration [128]. TNFα may inhibit 

satellite cell activity in MDX dystrophic muscles [128]. Endogenous TNFα disruption 

decreases myoblast development [129-132]. Immune cells or dystrophic muscle TNFα may 

impair myogenic differentiation. Cytokine levels or downstream signalling may affect the 

outcome. TNFα signalling promotes myogenic development by targeting p38 MAP kinase, 

while inhibiting NF-kB [61, 62, 72].  

Knocking down IL-6 in mice (known as KO) prevents satellite cell-dependent hypertrophy 

[51]. Another factor in compensatory hypertrophy is LIF, a close relative of IL-6 [122,133]. 

Muscles that are in the process of healing after an acute injury release IL-6 and LIF [134, 

135] and it has been shown that endogenous LIF stimulates muscle regeneration in mice 

[135,136]. Muscle IL-6 expression is elevated in DMD [137] and young MDX mice [138]. 

There is a correlation between IL-6 and the severity of DMD in adult mice [139], showing 

that IL-6 worsens the disease. The severe DMD phenotype in humans is recapitulated in adult 
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MDX mice that have been engineered to produce recombinant IL-6 [139]. Muscle 

regeneration and dystrophic muscle defect reduction in MDX mice were both improved by 

blocking IL-6 receptors [138]. A second study aiming to find muscle improvement with 

MDX failed to do so [140]. Different antibody dosage techniques and/or functional analysis 

might account for the disparity. Normal gastrointestinal function can be restored in MDX 

mice by administering an anti-IL-6 antibody [141]. The dystrophic phenotype of Duchenne 

muscular dystrophy (DMD) may be worsened by elevated IL-6 levels; hence, this cytokine 

may be a therapeutic target. Muscle atrophy is associated with persistently high systemic IL-6 

levels [142], whereas IL-6 production is linked with pro-myogenic effects during injury-

induced regeneration and load-induced compensatory hypertrophy. Myogenic differentiation 

is affected both positively and adversely by IL-6 when studied in vitro. Satellite cell 

proliferation, migration, and myoblast differentiation are all stimulated by autocrine IL-6 [66, 

110,111]. By inhibiting p90RSK and p70S6K, exogenous IL-6 inhibits myogenic 

development in C2C12 [143]. Like the contradictory function of TNFa in differentiation. 

There is some debate about whether or not IFNc has a role in myogenesis, similar to that of 

TNFa and IL-6. IFNcKO animals or IFN receptor-blocking antibodies hinder muscle 

regeneration [49]. Regenerating muscles produce IFNc from immune and muscle cells. 

Myogenesis is promoted by IFN. Negative effects of high IFNc on regeneration caused by 

lRGM1 deletion can be reversed with an IFNc-neutralizing antibody in mice [144]. IFNc 

receptor-blocking antibodies suppress C2C12 cell proliferation and fusion [49], and 

exogenous IFNc attenuates differentiation of C2C12 cells [145] and human skeletal 

myoblasts [146]. Considering muscle-derived pro-myogenic and pathological anti-myogenic 

IFNs may help reconcile these observations. There is no evidence that IFNc generated in 

muscles serves any function in the body. 

Final thoughts and directions for the future 

Cytokines, secreted by invading immune cells at muscle damage sites, aid in muscle healing 

and regeneration. Muscle has been recognised as a major source of cytokines across all 

families in the past 10–15 years, despite the autocrine activities of a few muscle-secreted 

cytokines being known for much longer. Recently, several cytokines were classified. Source 
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and concentration determine TNFa's signalling pathways and myogenesis effects. Myogenic 

differentiation is a well-orchestrated process that uses muscle-derived cytokines. Few studies 

have examined the contribution of muscle-derived cytokines to muscle regeneration in vivo. 

This information gap is academically intriguing and could hinder the development of more 

effective stem cell treatments for muscle illnesses like muscular dystrophy. CRISPR/Cas9 

gene editing should speed up the production of animals with cytokine ablation in skeletal 

muscle. Some transgenic mice express Cas9 driven by human skeletal actin (HSA)-Cre [147] 

and muscle creatine kinase (MCK)-Cre [148], which could be exploited to knock out or 

downregulate cytokine genes in muscle via sgRNAs. Muscle-specific stimulation of cytokine 

gene expression can be informative and therapeutically beneficial [149]. Combining dCas9-

SunTag [150,151] with Cre promoters can activate muscle-specific genes. Skeletal muscle 

cells release cytokines like other non-myeloid cells. Distinct cytokines may play different 

functions in differentiation and repair. Muscle-derived cytokines may assist autocrine 

activities. The source of a cytokine can affect its activity, as observed with TNF, IL-6, and 

IFN. How does the muscle cell use biochemical and biological processes to signal distinct 

cytokines? How are muscle-derived cytokines expressed, and do they have a hierarchical 

structure? Does cytokine signalling regulate myogenesis? How varied is a muscle cell 

population's cytokine production and reaction? Combining computational modelling and 

multi-pronged experimental approaches may help unravel a complex regulatory system. 
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Table 1: Positive and Negative regulators at different stages of myogenic differentiation 

STAGE POSITIVE REGULATORS NEGATIVE REGULATORS 

Satellite cell activation CCL2 

CCN2 

CXCL16 

FGFs 

G-CSF 

HGF 

IFNγ 

IGF 

IL-1

IL-6

LIF 

NGF 

PDGF 

TGFβ 

SHH 

Activin A 

Myostatin 

TNFα 

Myogenic Cell 
Survival 

CNTF 

IGF2 

SHH 

TNFSF14 

VEGF 

IL-1 

Cell Migration and 
Fusion 

CXCL12 

CXCL14 

IL-6

IL-7

VEGF 

-- 



 

Vidhyayana - ISSN 2454-8596 
An International Multidisciplinary Peer-Reviewed E-Journal 

www.vidhyayanaejournal.org 
Indexed in: Crossref, ROAD & Google Scholar 

Volume 9, Special Issue 2, March 2024 
A Virtual Conference in Amrit Kaal on “Viksit Bharat@2047” Page No. 465 

2nd Stage Fusion IL-4

IL-13

-- 

Cell Cycle Withdrawal 
and Initiation of 
Differentiation 

BDNF 

CXCL8 

Flt3L 

IGFs 

IFNγ 

IL-6

IL-12

IL-15

VEGF 

Activin A 

BMPs 

CCN2 

CCN3 

CNTF 

CT-1 

CXCL14 

FGFs 

GDF11 

HGF 

IL-1 

IL-7 

LIF 

Myostatin 

OSM 

PDGF 

TGFβ 

TNFα 

TNFSF10 

 


